direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×D72, C72⋊C23, C14⋊1D14, C7⋊D7⋊C22, (C7×C14)⋊C22, (C7×D7)⋊C22, (D7×C14)⋊5C2, C7⋊1(C22×D7), (C2×C7⋊D7)⋊4C2, SmallGroup(392,41)
Series: Derived ►Chief ►Lower central ►Upper central
C72 — C2×D72 |
Generators and relations for C2×D72
G = < a,b,c,d,e | a2=b7=c2=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 754 in 79 conjugacy classes, 28 normal (6 characteristic)
C1, C2, C2, C22, C7, C7, C23, D7, D7, C14, C14, D14, D14, C2×C14, C72, C22×D7, C7×D7, C7⋊D7, C7×C14, D72, D7×C14, C2×C7⋊D7, C2×D72
Quotients: C1, C2, C22, C23, D7, D14, C22×D7, D72, C2×D72
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 26)(2 25)(3 24)(4 23)(5 22)(6 28)(7 27)(8 19)(9 18)(10 17)(11 16)(12 15)(13 21)(14 20)
(1 7 6 5 4 3 2)(8 14 13 12 11 10 9)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 19)(2 20)(3 21)(4 15)(5 16)(6 17)(7 18)(8 26)(9 27)(10 28)(11 22)(12 23)(13 24)(14 25)
G:=sub<Sym(28)| (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,19)(9,18)(10,17)(11,16)(12,15)(13,21)(14,20), (1,7,6,5,4,3,2)(8,14,13,12,11,10,9)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,26)(9,27)(10,28)(11,22)(12,23)(13,24)(14,25)>;
G:=Group( (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,26)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,19)(9,18)(10,17)(11,16)(12,15)(13,21)(14,20), (1,7,6,5,4,3,2)(8,14,13,12,11,10,9)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,19)(2,20)(3,21)(4,15)(5,16)(6,17)(7,18)(8,26)(9,27)(10,28)(11,22)(12,23)(13,24)(14,25) );
G=PermutationGroup([[(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,26),(2,25),(3,24),(4,23),(5,22),(6,28),(7,27),(8,19),(9,18),(10,17),(11,16),(12,15),(13,21),(14,20)], [(1,7,6,5,4,3,2),(8,14,13,12,11,10,9),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,19),(2,20),(3,21),(4,15),(5,16),(6,17),(7,18),(8,26),(9,27),(10,28),(11,22),(12,23),(13,24),(14,25)]])
G:=TransitiveGroup(28,52);
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 7A | ··· | 7F | 7G | ··· | 7O | 14A | ··· | 14F | 14G | ··· | 14O | 14P | ··· | 14AA |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 7 | ··· | 7 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 |
size | 1 | 1 | 7 | 7 | 7 | 7 | 49 | 49 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 14 | ··· | 14 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D7 | D14 | D14 | D72 | C2×D72 |
kernel | C2×D72 | D72 | D7×C14 | C2×C7⋊D7 | D14 | D7 | C14 | C2 | C1 |
# reps | 1 | 4 | 2 | 1 | 6 | 12 | 6 | 9 | 9 |
Matrix representation of C2×D72 ►in GL4(𝔽29) generated by
28 | 0 | 0 | 0 |
0 | 28 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 0 | 28 |
11 | 26 | 0 | 0 |
15 | 25 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
11 | 26 | 0 | 0 |
11 | 18 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 25 | 3 |
0 | 0 | 14 | 11 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 28 | 0 |
0 | 0 | 24 | 1 |
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[11,15,0,0,26,25,0,0,0,0,1,0,0,0,0,1],[11,11,0,0,26,18,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,25,14,0,0,3,11],[1,0,0,0,0,1,0,0,0,0,28,24,0,0,0,1] >;
C2×D72 in GAP, Magma, Sage, TeX
C_2\times D_7^2
% in TeX
G:=Group("C2xD7^2");
// GroupNames label
G:=SmallGroup(392,41);
// by ID
G=gap.SmallGroup(392,41);
# by ID
G:=PCGroup([5,-2,-2,-2,-7,-7,488,8404]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^7=c^2=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations